Development of a deterministic downscaling algorithm for remote sensing soil moisture footprint using soil and vegetation classifications

نویسندگان

  • Yongchul Shin
  • Binayak P. Mohanty
چکیده

[1] Soil moisture (SM) at the local scale is required to account for small-scale spatial heterogeneity of land surface because many hydrological processes manifest at scales ranging from cm to km. Although remote sensing (RS) platforms provide large-scale soil moisture dynamics, scale discrepancy between observation scale (e.g., approximately several kilometers) and modeling scale (e.g., few hundred meters) leads to uncertainties in the performance of land surface hydrologic models. To overcome this drawback, we developed a new deterministic downscaling algorithm (DDA) for estimating fine-scale soil moisture with pixel-based RS soil moisture and evapotranspiration (ET) products using a genetic algorithm. This approach was evaluated under various synthetic and field experiments (Little Washita-LW 13 and 21, Oklahoma) conditions including homogeneous and heterogeneous land surface conditions composed of different soil textures and vegetations. Our algorithm is based on determining effective soil hydraulic properties for different subpixels within a RS pixel and estimating the long-term soil moisture dynamics of individual subpixels using the hydrological model with the extracted soil hydraulic parameters. The soil moisture dynamics of subpixels from synthetic experiments matched well with the observations under heterogeneous land surface condition, although uncertainties (Mean Bias Error, MBE : 0.073 to 0.049) exist. Field experiments have typically more variations due to weather conditions, measurement errors, unknown bottom boundary conditions, and scale discrepancy between remote sensing pixel and model grid resolution. However, the soil moisture estimates of individual subpixels (from the airborne Electronically Scanned Thinned Array Radiometer (ESTAR) footprints of 800 m 800 m) downscaled by this approach matched well (R : 0.724 to 0.914,MBE : 0.203 to 0.169 for the LW 13; R : 0.343–0.865,MBE : 0.165 to 0.122 for the LW 21) with the in situ local scale soil moisture measurements during Southern Great Plains Experiment 1997 (SGP97). The good correspondence of observed soil water characteristics (h) functions (from the soil core samples) and genetic algorithm (GA) searched soil parameters at the LW 13 and 21 sites demonstrated the robustness of the algorithm. Although the algorithm is tested under limited conditions at field scale, this approach improves the availability of remotely sensed soil moisture product at finer resolution for various land surface and hydrological model applications.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Soil Moisture Estimation in Rangelands Using Remote Sensing (Case Study: Malayer, West of Iran)

Soil moisture is generally regarded as the limiting factors in rangeland production. Although many studies have been conducted to estimate soil moisture in semiarid areas, there is little information on mountainous rangelands in west of Iran. The present study aims to investigate the soil moisture estimation in rangelands as compared to the other land uses over a mountainous area in central Zag...

متن کامل

Effect of Land Cover Heterogeneity on Soil Moisture Retrieval Using Active Microwave Remote Sensing Data

This study addresses the issue of the variability and heterogeneity problems that are expected from a sensor with a larger footprint having homogenous and heterogeneous sub-pixels. Improved understanding of spatial variability of soil surface characteristics such as land cover and vegetation in larger footprint are critical in remote sensing based soil moisture retrieval. This study analyzes th...

متن کامل

An improved algorithm for disaggregating microwave-derived soil moisture based on red, near-infrared and thermal-infrared data

Accurate high-resolution soil moisture data are needed for a range of agricultural and hydrologic activities. To improve the spatial resolution of ∼40 km resolution passive microwave-derived soil moisture, a methodology based on 1 km resolution MODIS (MODerate resolution Imaging Spectroradiometer) red, near-infrared and thermal-infrared data has been implemented at 4 km resolution. The three co...

متن کامل

Downscaling of remotely sensed soil moisture with a modified fractal interpolation method using contraction mapping and ancillary data

Previous work showed that remotely sensed soil moisture fields exhibit multiscaling and multifractal behavior varying with the scales of observations and hydrometeorological forcing (Remote Sens. Environ. 81 (2002) 1). Specifically, it was determined that this multiscaling behavior is consistent with the scaling of soil hydraulic properties and vegetation cover, while the multifractal behavior ...

متن کامل

An unmixing algorithm for remotely sensed soil moisture

[1] We present an unmixing method, based on genetic algorithm-soil-vegetationatmosphere-transfer modeling to extract subgrid information of soil and vegetation from remotely sensed soil moisture (downscaled; e.g., soil hydraulic properties, area fractions of soil-vegetation combinations, and unmixed soil moisture time series) that most land surface models use. The unmixing method was evaluated ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2013